
2018-03-29 Python lesson tutor notes
These notes are intended for the tutor as they work through the material, but may be useful for independent
learning.

Start the slides
TITLE: Building Programs With Python (Part 1)
SECTION 01: Setup
SECTION 02: Getting Started
SECTION 03: Data Analysis
SECTION 04: Visualisation
SECTION 05: for loops
SECTION 06: lists
SECTION 07: Making choices
SECTION 08: Analysing multiple files
SECTION 09: Conclusions (Part 1)
TITLE: Building Programs With Python (Part 2)
SECTION 10: Jupyter notebooks
SECTION 11: Functions
SECTION 12: Refactoring
SECTION 13: Command-line programs
SECTION 14: Testing and documentation
SECTION 15: Errors
SECTION 16: Defensive programming

TITLE: Building Programs With Python (Part 1)

SLIDE: Etherpad

Please use the Etherpad for the course DEMONSTRATE LINK

SLIDE: Why Are We Here?

We're here to learn how to program (this lesson just happens to be in Python)
This is a way to solve problems in your research through making a computer do work quickly and
accurately
You'll build functions that do specific, defined tasks
You'll automate those functions to perform tasks over and over again (in various combinations)
You'll manipulate data, which is at the heart of all academia
You'll learn some file input/output to make the computer read and write useful information
You'll learn some data structures, which are ways to organise data so that the computer can deal with it
efficiently

SLIDE: XKCD

The XKCD comic is tongue-in cheek, but there's a lot of truth in this

SLIDE How are we doing this?

We'll be learning how to program using Python
Why Python?
We need to use some language
Python is free, with good documentation and lots of books and online courses.
Python is widely-used in academia, and there's lots of support online
It can be easier for novices to pick up than other languages
We won't be covering the entire language in detail
For those with a bit more experience, note: we will be using some long-handed ways of doing things
to keep them clear for novices

SLIDE No, I mean "How are we doing this?"

We'll use two tools to write Python
The **bulk of the course will be in a text editor

Text editors are part of the edit-save-execute cycle, which is how much code is written
We'll also spend a little bit of time writing code in the Jupyter notebook**

Jupyter is good for exploring data, prototyping code, data-wrangling, and teaching
However, it's not so good for writing "production code" in a general sense

There are also specialist integrated development environments (IDEs) for Python that are extremely
useful for developers, but we'll not be using them

SLIDE Do I need to use Python afterwards?

No.
The lesson and principles are general, we're just teaching in Python
What you learn here will be relevant in other languages
If your field or colleagues use another language in preference, there may be very good reasons for
that, and they may be able to offer detailed, relevant support and help to you in that language.
This is valuable.
Language Wars waste everyone's time.

SLIDE What are we doing?

We're using a motivating example of data analysis
We've got some data relating to a new treatment for arthritis, and we're going to explore it.
Data represents patients and daily measurements of inflammation
We're going to analyse the data
We're going to visualise the data
We're going to get the computer to do this for us
Automation is key:

fewer human mistakes

easier to apply to other future datasets
easier to share with others (transparency)

We can also share our code and results via sites such as GitHub and BitBucket (supplementary
information, impact)

SECTION 01: Setup

SLIDE Setting Up - 1 - DEMO

We want a neat (clean) working environment: always a good idea when starting a new project - it
helps for when you might want to use git to put it under version control, later.
Change directory to desktop (in terminal or Explorer)
Create directory python-novice-inflammation
Change your working directory to that directory

cd ~/Desktop
mkdir python-novice-inflammation
cd python-novice-inflammation

SLIDE Setting Up - 2 - DEMO

We need to download our data (and also a little code that can help us)

Go to Etherpad in browser http://pad.software-carpentry.org/2018-03-29-standrews

Point out file links http://swcarpentry.github.io/python-novice-inflammation/data/python-novice-
inflammation-data.zip

Click on file links to download

Move files to python-novice-inflammation directory

Extract files - this will create a subdirectory called data in that folder

CHECK WHETHER EVERYONE HAS EXTRACTED THE DATA

SECTION 02: Getting Started

SLIDE Python in the terminal

We start the Python console with the command python
This should bring up the interactive console

http://pad.software-carpentry.org/2018-03-29-standrews
http://swcarpentry.github.io/python-novice-inflammation/data/python-novice-inflammation-data.zip

Explain header information
Explain the prompt

$ python
Python 3.6.3 |Anaconda custom (64-bit)| (default, Oct 6 2017, 12:04:38)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

CHECK WHETHER EVERYONE HAS STARTED THE CONSOLE

SLIDE Python REPL

You learned about the REPL (read-evaluate-print-loop) in the shell lesson
Python's console implements the REPL

We can use Python like a complex calculator
Note the spaces around operators - good Python style

>>> 3 + 5
8
>>> 12 / 7
1.7142857142857142
>>> 2 ** 16
65536
>>> 15 % 4
3
>>> (2 + 4) * (3 - 7)
-24

SLIDE My first variable

We've seen how to use the REPL

To build interesting things, we'll need to store values
We need to work with variables

Variables are like named boxes

An item of data goes into the box
When we refer to the box/variable name, we get the contents of the box

We need a variable name

We need variable contents

Use a real-life example to hand if possible

You can think of a variable as a labelled box, containing a data item

Here, we have a box labelled Name - this is the variable name
We've put the value Samia into the box

SLIDE: Creating a variable

We assign a value to a variable with the equals sign: =

Variable name goes on the left, value on the right

Character strings (words etc.) are enclosed in quotes

After assignment, if we refer to the variable Name, we get the value that's in the box, which is: Samia

The print() function shows the value of a variable

We refer to the name of the variable, and get its contents

>>> name = "Samia"
>>> name
'Samia'
>>> print(name)
Samia

CHECK THAT EVERYONE GETS THE CONCEPT/SEES THE NAME

SLIDE: Working with variables

Lead the students through the code:

>>> weight_kg = 55
>>> print(weight_kg)
55

Note, we're assigning an integer now (no quotes), but assignment is the same for all data items
Print weight_kg to see its value
Variables can be substituted by name wherever a value would go, in calculations for example

>>> 2.2 * weight_kg
121.00000000000001

People may ask about floating point representations here - an introduction is at
https://docs.python.org/3/tutorial/floatingpoint.html - this is on the Etherpad.

The print() function will take more than one argument, separated by commas, and print them

>>> print("weight in pounds", 2.2 * weight_kg)
weight in pounds 121.00000000000001

Reassigning to the same variable overwrites the old value

>>> weight_kg = 57.5
>>> print("weight in kilograms is now:", weight_kg)
weight in kilograms is now: 57.5

Changing the value of one variable does not automatically change the values of other defined variables

>>> weight_lb = 2.2 * weight_kg
>>> print('weight in kilograms:', weight_kg, 'and in pounds:', weight_lb)
weight in kilograms: 57.5 and in pounds: 126.50000000000001
>>> weight_kg = 100
>>> print('weight in kilograms:', weight_kg, 'and in pounds:', weight_lb)
weight in kilograms: 100 and in pounds: 126.50000000000001

Although we changed the value in weight_kg, weight_lb did not change when we did so

SLIDE Exercise 01 (5min)

PUT THE EXERCISE SLIDE ON SCREEN

MCQ: put up four colours of sticky notes

The solution is 2

SLIDE Exercise 03 (5min)

MCQ: put up four colours of sticky notes

https://docs.python.org/3/tutorial/floatingpoint.html

The code prints Hopper Grace

SECTION 03: Data Analysis

SLIDE Examine the data

SHOW THE TERMINAL ON SCREEN

In the terminal (head was used this morning)

Exit Python first!

Ctrl-D
quit()

$ head data/inflammation-01.csv

Describe the data: plain text, csv format

Can you tell what the data is? (i.e. is this good practice for sharing data?)

One row per patient
One column per day
Values separated by commas

State that we'll use the numpy library to work with this in Python

WE WANT TO FIND SUMMARY INFORMATION ABOUT INFLAMMATION BY PATIENT AND BY
DAY

SLIDE Python libraries

Most programming languages have libraries (also known as modules, or packages).

Libraries contain code that's not in the main language but is useful for something specific -
they can define functions, data types, and whole programs
Libraries add specific functionality to the language - you import as many as you neeed

Python has libraries for many types of work and operations

In Python, we call on libraries with the import statement, when we need them
Importing a library is like getting a new piece of equipment out of the locker and onto the lab bench

There are several repositories that host Python packages

PyPI
conda

Import and describe libraries

https://pypi.python.org/pypi
https://conda.io/docs/

>>> import numpy

numpy is a library that provides functions and methods to work with arrays and matrices, such as
those in your dataset

SLIDE Load data from file

The numpy library gives us a function called loadtxt() that loads tabular data from a file
To use a function from a library, the format is usually library.function(): dotted notation
loadtxt() expects two arguments or parameters - values it needs to know to work
The parameter fname takes the path to the file we want to load
The parameter delimiter takes the character that we think separates columns in that file

>>> numpy.loadtxt(fname='data/inflammation-01.csv', delimiter=',')
array([[0., 0., 1., ..., 3., 0., 0.],
 [0., 1., 2., ..., 1., 0., 1.],
 [0., 1., 1., ..., 2., 1., 1.],
 ...,
 [0., 1., 1., ..., 1., 1., 1.],
 [0., 0., 0., ..., 0., 2., 0.],
 [0., 0., 1., ..., 1., 1., 0.]])

Here, our function is numpy.loadtxt(), and Dotted notation tells us that loadtxt() belongs to
numpy
Python will accept double- or single-quotes around strings

SLIDE Loaded data

If we don't ask Python to do anything with the data, it just loads the data, then shows the data to us.
The data display is truncated by default - ellipses (...) show rows and columns that were excluded for
space
Significant digits are not shown
NOTE that integers in the file have been converted to floating point numbers
Ask the learners to assign the matrix to a variable called data: MAKE THIS CHANGE IN-PLACE

>>> data = numpy.loadtxt(fname="data/inflammation-01.csv", delimiter=",")

Now when we execute the cell we see no output, but data now contains the array, which we can see
by printing the variable

>>> print(data)
[[0. 0. 1. ..., 3. 0. 0.]
 [0. 1. 2. ..., 1. 0. 1.]
 [0. 1. 1. ..., 2. 1. 1.]

 ...,
 [0. 1. 1. ..., 1. 1. 1.]
 [0. 0. 0. ..., 0. 2. 0.]
 [0. 0. 1. ..., 1. 1. 0.]]

SLIDE What is our data?

We've loaded some data, but what is it?

>>> type(data)
<class 'numpy.ndarray'>

Python sees our data as a special type: numpy.ndarray
From dotted notation we see that ndarray belongs to (was defined in) the numpy library
ndarray stands for "n-dimensional array" - so this is an n-dimensional array from the numpy library

SLIDE Members and attributes

Creating our data array created a lot of information, too
We created information about the array called attributes
This information belongs to data so is accessed in the same way as a module function, through
dotted notation

>>> print(data.dtype)
float64
>>> print(data.shape)
(60, 40)

print(data.dtype) tells us that the data type for values in the array is: 64-bit floating point
numbers
print(data.shape) tells us that there are 60 rows and 40 columns in the dataset

SLIDE Indexing arrays

We often want to work with subsets of data

individual rows and columns
subgroups of rows and columns
individual patients (rows)
individual days (columns)

Arrays are indexed by row and column, using square bracket notation

To get a single element from the array, index using square bracket notation - row first, then column

>>> data[10, 10]
5.0

In Python we index from zero, so the first element is data[0, 0]

>>> print('first value in data:', data[0, 0])
first value in data: 0.0
>>> print('middle value in data:', data[30, 20])
middle value in data: 13.0

SLIDE Slicing arrays

To get a section from the array, index using square bracket notation - but specify start and end points,
separated by a colon
The slice 0:4 means start at index zero and go up to, but not including, index 4. So it takes elements 0,
1, 2, 3 (four elements)

>>> print(data[0:4, 0:10])
[[0. 0. 1. 3. 1. 2. 4. 7. 8. 3.]
 [0. 1. 2. 1. 2. 1. 3. 2. 2. 6.]
 [0. 1. 1. 3. 3. 2. 6. 2. 5. 9.]
 [0. 0. 2. 0. 4. 2. 2. 1. 6. 7.]]
>>> print(data[5:10, 0:10])
[[0. 0. 1. 2. 2. 4. 2. 1. 6. 4.]
 [0. 0. 2. 2. 4. 2. 2. 5. 5. 8.]
 [0. 0. 1. 2. 3. 1. 2. 3. 5. 3.]
 [0. 0. 0. 3. 1. 5. 6. 5. 5. 8.]
 [0. 1. 1. 2. 1. 3. 5. 3. 5. 8.]]
>>> print(data[2:4, 2:4])
[[1. 3.]
 [2. 0.]]

SLIDE More slices, please!

If we don't specify a start for the slice, Python assumes the first element is meant (element zero)

If we don't specify an end for the slice, Python assumes the last element is meant

To get the top-right corner of the array, we can specify data[:3, 36:]

Explain \n

>>> small = data[:3, 36:]
>>> print('small is:\n', small)
small is:
 [[2. 3. 0. 0.]
 [1. 1. 0. 1.]
 [2. 2. 1. 1.]]

QUESTION: What does : on its own mean?

>>> print(data[0:2, :])
[[0. 0. 1. 3. 1. 2. 4. 7. 8. 3. 3. 3. 10. 5.
 7. 4. 7. 7. 12. 18. 6. 13. 11. 11. 7. 7. 4. 6.
 8. 8. 4. 4. 5. 7. 3. 4. 2. 3. 0. 0.]
 [0. 1. 2. 1. 2. 1. 3. 2. 2. 6. 10. 11. 5. 9.
 4. 4. 7. 16. 8. 6. 18. 4. 12. 5. 12. 7. 11. 5.
 11. 3. 3. 5. 4. 4. 5. 5. 1. 1. 0. 1.]]

SLIDE Exercise 03

MCQ: put up four colours of sticky notes

The value is oxyg, number 1

SLIDE Array operations

Arithmetic operations on arrays are performed elementwise.

>>> doubledata = data * 2.0

This operation multiplies every array element by 2.0.
Look at the top right corner of the original array

>>> print("original:\n", data[:3, 36:])
original:
 [[2. 3. 0. 0.]
 [1. 1. 0. 1.]
 [2. 2. 1. 1.]]

Look at the top right corner of the doubled array

>>> print("doubledata:\n", doubledata[:3, 36:])
doubledata:
 [[4. 6. 0. 0.]
 [2. 2. 0. 2.]
 [4. 4. 2. 2.]]
 >>> tripledata = doubledata + data
>>> print("tripledata:\n", tripledata[:3, 36:])
tripledata:
 [[6. 9. 0. 0.]
 [3. 3. 0. 3.]
 [6. 6. 3. 3.]]

SLIDE numpy functions

numpy provides functions that can perform more complex operations on arrays
Some of the numpy operations include statistical summaries: .mean(), .min(), .max() etc.

>>> print(numpy.mean(data))
6.14875

We can asssign the output from these functions to variables

By default, these functions give summaries of the whole array

Introduce multiple assignment on one line, or use three lines

>>> maxval, minval, stdval = numpy.max(data), numpy.min(data),
numpy.std(data)
>>> print('maximum inflammation:', maxval)
maximum inflammation: 20.0
>>> print('minimum inflammation:', minval)
minimum inflammation: 0.0
>>> print('standard deviation:', stdval)
standard deviation: 4.61383319712

These functions can also be applied directly to arrays

>>> maxval, minval, stdval = data.max(), data.min(), data.std()
>>> print('maximum inflammation:', maxval)
maximum inflammation: 20.0
>>> print('minimum inflammation:', minval)
minimum inflammation: 0.0
>>> print('standard deviation:', stdval)
standard deviation: 4.61383319712

SLIDE Summary for one patient

What if we want to get summaries patient-by-patient (row-by-row)?
We can extract a single row into a temporary variable, and calculate the mean for that variable

>>> patient_0 = data[0, :] # temporary variable
>>> print('maximum inflammation for patient 0:', patient_0.max())
maximum inflammation for patient 0: 18.0

NOTE: that comments are preceded with a hash # and can be placed after a line of code

EXPLAIN: why leaving comments is good (can do that in all code - not just Jupyter notebooks)

We can also apply the numpy function directly, without creating a variable

>>> print('maximum inflammation for patient 0:', numpy.max(data[0, :]))
maximum inflammation for patient 0: 18.0
>>> print('maximum inflammation for patient 2:', numpy.max(data[2, :]))
maximum inflammation for patient 2: 19.0

SLIDE Summary for all patients

But what if we want to know about all patients at once?

Or what if we want an average inflammation per day?

Writing one line per row, or per column, is likely to lead to mistakes and typos

We can specify which axis a function applies to

Specifying axis=0 makes the function work on columns (days)

working on values 'by' row/row-wise

Specifying axis=1 makes the function work on rows (patients)

working on values 'by' column/column-wise

SLIDE numpy operations on axes

numpy functions take an axis= parameter which controls the axis for summary statistic calculations.

>>> print(numpy.max(data, axis=1))
[18. 18. 19. 17. 17. 18. 17. 20. 17. 18. 18. 18. 17. 16.
17.
 18. 19. 19. 17. 19. 19. 16. 17. 15. 17. 17. 18. 17. 20.
17.
 16. 19. 15. 15. 19. 17. 16. 17. 19. 16. 18. 19. 16. 19.
18.
 16. 19. 15. 16. 18. 14. 20. 17. 15. 17. 16. 17. 19. 18.
18.]
>>> print(data.mean(axis=0))
[0. 0.45 1.11666667 1.75 2.43333333 3.15
 3.8 3.88333333 5.23333333 5.51666667 5.95 5.9
 8.35 7.73333333 8.36666667 9.5 9.58333333
 10.63333333 11.56666667 12.35 13.25 11.96666667
 11.03333333 10.16666667 10. 8.66666667 9.15 7.25
 7.33333333 6.58333333 6.06666667 5.95 5.11666667 3.6
 3.3 3.56666667 2.48333333 1.5 1.13333333
 0.56666667]

SECTION 04: Visualisation

SLIDE Visualisation

"The purpose of computing is insight, not numbers" - Richard Hamming

The best way to gain insight is often to visualise data.
Visualisation is a large topic that deserves more attention

We're just scratching the surface, here

SLIDE Graphics package matplotlib

matplotlib is the de facto standard/base plotting library in Python

>>> import matplotlib.pyplot

We use matplotlib.pyplot to make the interaction a bit more like matlab

SLIDE matplotlib.pyplot.imshow()

The .imshow() function converts matrix values into an image

>>> image = matplotlib.pyplot.imshow(data)
>>> matplotlib.pyplot.show()

Here, small values are blue, and large values are yellow (you can change this colour scheme with
other settings…)

From the image, we can see inflammation rising and falling over a 40-day period for all patients.

QUESTION: does this look reasonable?

SLIDE matplotlib.pyplot.plot()

.plot() shows a conventional line graph
We're going to use it to plot the average inflammation level on each day of the study
We'll create the variable ave_inflammation and use numpy.mean() on axis 0 of the data

>>> ave_inflammation = numpy.mean(data, axis=0)
>>> ave_plot = matplotlib.pyplot.plot(ave_inflammation)
>>> matplotlib.pyplot.show()

NOTE: ask students if the data looks reasonable?
The data does not look reasonable. Biologically, we expect a sharp rise in inflammation, followed
by a slow tail-off

SLIDE Investigating data

Since our plot of .mean() values looks artificial, let's check on other statistics to see if we can
see what's going on.
We'll plot the maximum value by day

>>> max_plot = matplotlib.pyplot.plot(numpy.max(data, axis=0))
>>> matplotlib.pyplot.show()

NOTE we're not defining a variable, this time

>>> min_plot = matplotlib.pyplot.plot(numpy.min(data, axis=0))
>>> matplotlib.pyplot.show()

Ask students if the data looks reasonable?

The data looks very artificial. The maxima are completely smooth, but the minima are a step
function.

NOTE: we would not have noticed this without visualisation

SLIDE Exercise 04 (5min)

>>> std_plot = matplotlib.pyplot.plot(numpy.std(data, axis=0))
>>> matplotlib.pyplot.show()

SLIDE FIGURES AND SUBPLOTS

WE'RE WORKING IN A SCRIPT FOR THE FIRST TIME

Exit Python
Open a new script called subplots.py

$ nano subplots.py

You're now in the nano editor

We write the Python code here, then save it, exit, and run it with python subplots.py.

DESCRIBE SCRIPT

First we import packages

import numpy
import matplotlib.pyplot

Next we load data
Comments tell us why/what we are doing

Load inflammation data
data = numpy.loadtxt(fname='data/inflammation-01.csv', delimiter=',')

We can put all three plots we just drew into a single figure
To do this, we use matplotlib to create a figure, and put it in a variable called fig

the figsize argument sets the (width, height) of the figure in inches

Create a figure
fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0))

We then create three axes
these are the variables that hold the individual plots
one axis per plot

Using the .add_subplot() function, we need to specify three things: -* number of rows, number of
columns, which cell this figure goes into

THIS NEEDS TO BE DRAWN OUT ON THE BOARD

Add subplots for statistical summaries
axes1 = fig.add_subplot(1, 3, 1)
axes2 = fig.add_subplot(1, 3, 2)
axes3 = fig.add_subplot(1, 3, 3)

Once we've created our plot axes, we can add labels and plots to each of them in turn
Plot axes properties are usually changed using the .set_<something>() syntax

Here we're changing only the label on the y-axis

Add y-axis label to each subplot
axes1.set_ylabel('average')
axes2.set_ylabel('max')
axes3.set_ylabel('min')

We can plot on an axis by using its .plot() function
As before, we can pass the output from the numpy.max() function directly

Plot the summary data
axes1.plot(numpy.mean(data, axis=0))
axes2.plot(numpy.max(data, axis=0))
axes3.plot(numpy.min(data, axis=0))

We'll tighten up the presentation by using fig.tight_layout()
this is a function that moves the axes until they are visually pleasing.

Tidy the figure
fig.tight_layout()

Finally, we'll show the figure in the interactive window

Show figure in the interactive window
matplotlib.pyplot.show()

Write the file

Save the file

Exit to terminal

Now we run the script with python subplots.py

$ python subplots.py

This is the most demanding code you have written, so far! ROUND OF APPLAUSE FOR
YOURSELVES!

SLIDE Exercise 05 (5min)

Note that it helps to change figsize

Otherwise the only change is in add_subplot()

cp the file to prepare for a new script

$ cp subplots.py exercise_05.py
$ nano exercise_05.py

New script:

import numpy
import matplotlib.pyplot

Load inflammation data
data = numpy.loadtxt(fname='data/inflammation-01.csv', delimiter=',')

Create a figure
fig = matplotlib.pyplot.figure(figsize=(3.0, 10.0))

Add subplots for statistical summaries
axes1 = fig.add_subplot(3, 1, 1)
axes2 = fig.add_subplot(3, 1, 2)
axes3 = fig.add_subplot(3, 1, 3)

Add y-axis label to each subplot
axes1.set_ylabel('average')
axes2.set_ylabel('max')
axes3.set_ylabel('min')

Plot the summary data
axes1.plot(numpy.mean(data, axis=0))
axes2.plot(numpy.max(data, axis=0))
axes3.plot(numpy.min(data, axis=0))

Tidy the figure
fig.tight_layout()

Show figure in the interactive window
matplotlib.pyplot.show()

Execute script

$ python subplots.py

NOW, TO DO EVEN MORE INTERESTING THINGS, WE NEED TO LEARN A LITTLE MORE
ABOUT PROGRAMMING

SECTION 05: for loops

SLIDE Motivation

We wrote code that plots values of interest from our dataset
BUT soon we're going to get dozens of datasets to analyse
So, we need to tell the computer to repeat our plots and analysis on each dataset
We're going to do this with for loops

NOTE: for loops are a fundamental method for program control across nearly every
programming language
NOTE: for loops in python work just like those the learners saw in bash, but are syntactically
different

SLIDE Spelling bee

If we wanted to spell a word, like 'lead' one letter at a time

START UP A PYTHON CONSOLE

$ python

>>> word = "lead"

We could index each letter in turn (just like elements of an array)

>>> print(word[0])
l
>>> print(word[1])
e
>>> print(word[2])
a
>>> print(word[3])
d

But this has some problems - ASK LEARNERS WHAT PROBLEMS THEY SEE
The approach doesn't scale - what if our word is hundreds of letters long?
What if our word is longer than the indices? We don't get all the data; if it's shorter, we get an
error.
demonstrate with oxygen and tin - MODIFY THE WORD IN PLACE

>>> word = "tin"
>>> print(word[3])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

SLIDE for loops

for loops perform an operation for every item in a collection

NOTE: importance of the tab character and syntactic whitespace

>>> word = "lead"
>>> for char in word:
... print(char)
...
l
e
a
d

Why is this better? ASK THE LEARNERS
It's shorter code (less opportunity for error)
It's more flexible and robust - it doesn't matter how long word is, the code will still spell it out
one letter at a time

>>> word = "oxygen"
>>> for char in word:
... print(char)
...
o
x
y
g
e
n

SLIDE for loop syntax

The general loop syntax is defined by a for statement, and a code block

The for loop statement ends in a colon, :
The code block is indented with a tab (\t)

Everything indented immediately below the for statement is part of the for loop

There is no command or statement to signify the end of the loop body - only a change in
indentation

This is quite different from most other languages (and some people hate Python because of it)

If further example needed, put the code below in a script

for char in word:
 print(char)
 print("I'm in the loop")
 # This is a comment
 print("Still in the loop")

 print("I'm in the loop as well")
print("Not in the loop")

SLIDE Counting with a for loop

Code in a for loop can see and modify variables defined outside the loop

>>> length = 0
>>> for vowel in 'aeiou':
... length = length + 1
...
>>> print("There are", length, "vowels")
There are 5 vowels

Ask the learners what output they expect
Talk through the operations of the loop, if necessary

SLIDE for loop variables

The loop variable gets updated once per cycle of the loop
The loop variable also still exists once the loop is finished

>>> letter = "z"
>>> print(letter)
z
>>> for letter in "abc":
... print(letter)
...
a
b
c
>>> print("after the loop, letter is:", letter)
after the loop, letter is: c

ASK THE LEARNERS WHAT OUTPUT THEY EXPECT
The value of letter is c, the last updated value in the loop - not z, which would be the case if the
loop variable only had scope within the loop

SLIDE range()

The range() function creates a sequence of numbers.
The sequence depends on the number and value of arguments given

>>> seq = range(3)
>>> print("Range is:", seq)
Range is: range(0, 3)
>>> for val in seq:
... print(val)
...
0
1
2

Substitute other ranges and run again

>>> seq = range(2, 5)
>>> print("Range is:", seq)
Range is: range(2, 5)
>>> for val in seq:
... print(val)
...

2
3
4
>>> seq = range(3, 10, 3)
>>> print("Range is:", seq)
Range is: range(3, 10, 3)
>>> for val in seq:
... print(val)
...
3
6
9
>>> seq = range(10, 0, -1)
>>> print("Range is:", seq)
Range is: range(10, 0, -1)
>>> for val in seq:
... print(val)
...
10
9
8
7
6
5
4
3
2
1

A single value n gives the sequence [0, ..., n-1]

Two values: m, n gives the sequence [m, ..., n-1]

Three values: m, n, p gives the sequence [m, m+p, ..., n-1] and skips n-1 if it's not in the
sequence.

NOTE: range() returns a range type that can be iterated over.

SLIDE Exercise 06 (5min)

Tell learners that you can add strings

>>> instr = "Newton"
>>> outstr = ""
>>> for char in instr:
... outstr = char + outstr
...
>>> print(outstr)
notweN

SECTION 06: lists

SLIDE Lists

Lists are defined as ordered lists of values
enclosed in square brackets
separated by commas

>>> odds = [1, 3, 5, 7]
>>> print("odds are:", odds)
odds are: [1, 3, 5, 7]

They can be indexed and sliced, as seen for arrays

>>> print('first and last:', odds[0], odds[-1])
first and last: 1 7
>>> print(odds[2:])
[5, 7]

They can be iterated over, in `for' loops

>>> for number in odds:
... print(number)
...
1
3
5
7

SLIDE Mutability

Python has a concept of mutability.

Items that can be modified in-place are mutable.
Those that can't are immutable.

Lists are mutable, strings are immutable.

lists and strings are both sequences, BUT you can change the elements in a list, after it is
created: lists are mutable

>>> names = ["Curie", "Darwing", "Turing"] # typo in Darwin's name
>>> print("names is originally:", names)
names is originally: ['Curie', 'Darwing', 'Turing']

We have a typo - let's correct it

>>> names[1] = 'Darwin' # correct the name
>>> print('final value of names:', names)
final value of names: ['Curie', 'Darwin', 'Turing']

strings are NOT mutable

>>> name = "darwin"
>>> name[0] = "D"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

SLIDE Changer danger

There are risks associated with modifying lists in-place

Rather than make copies of lists, when assigned to more than one variable, Python will make reference
to the original list

>>> my_list = [1, 2, 3, 4]
>>> your_list = my_list
>>> print("my list:", my_list)
my list: [1, 2, 3, 4]
>>> my_list[1] = 0

ASK LEARNERS WHAT THEY THINK your_list contains

>>> print("your list:", your_list)
your list: [1, 0, 3, 4]

If two variables refer to the same list, any changes to that list are reflected in both variables.

SLIDE List copies

To avoid this kind of effect:
make a copy of a list by slicing it**, or using the list() function that returns a new list

>>> my_list = [1, 2, 3, 4] # original list
>>> your_list = my_list[:] # copy 1
>>> your_other_list = list(my_list) # copy 2
>>> print("my_list:", my_list)

my_list: [1, 2, 3, 4]
>>> my_list[1] = 0
>>> print("my_list:", my_list)
my_list: [1, 0, 3, 4]
>>> print("your_list:", your_list)
your_list: [1, 2, 3, 4]
>>> print("your_other_list:", your_list)
your_other_list: [1, 2, 3, 4]

SLIDE list functions

lists are Python objects and have a number of useful functions (called methods) to modify
their contents

.append() adds a value to the end of the list

>>> print(odds)
[1, 3, 5, 7]
>>> odds.append(9)
>>> print("odds after adding a value:", odds)
odds after adding a value: [1, 3, 5, 7, 9]

.reverse() reverses the order of list items in place

>>> odds.reverse()
>>> print("odds after reversing the list:", odds)
odds after reversing the list: [9, 7, 5, 3, 1]

.pop() returns the last item in the list, and removes it from the list

>>> odds.pop()
1
>>> print("odds after popping:", odds)
odds after popping: [9, 7, 5, 3]

SLIDE Overloading

Overloading refers to an operator (e.g. +) having more than one meaning, depending on the thing it
operates on.

>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> vowels_welsh = ['a', 'e', 'i', 'o', 'u', 'w', 'y']
>>> print(vowels + vowels_welsh)
['a', 'e', 'i', 'o', 'u', 'a', 'e', 'i', 'o', 'u', 'w', 'y']

We can add (+) and even multiply (*) lists, even though they're not really arithmetic operations NOTE:
multiplication of lists does not work like multiplication of numpy arrays

>>> counts = [2, 4, 6, 8, 10]
>>> repeats = counts * 2
>>> print(repeats)
[2, 4, 6, 8, 10, 2, 4, 6, 8, 10]

Ask the learners what 'multiplication' (*) does for lists

SECTION 07: Making choices

SLIDE Conditionals

We often want the computer to do <something> if some condition is true
To do this, we can use an if statement

if statements end in a colon (:)
they also have a condition - the condition is evaluated and, if found to be true, the code block
is executed
The code block is indented as was the case with the for loop

This is an almost universal construct in programming languages

>>> num = 37
>>> if num > 100:
... print('greater')
...
>>> num = 149
>>> if num > 100:
... print('greater')
...
greater

Any condition that might evaluate to True or False can be used:
SHOW A DIFFERENT TEST

>>> if 'atlas' == 'atlas':
... print("The same")
...
The same

SLIDE if-else statements

An if statement executes code if the condition evaluates as true

But what if the condition evaluates as false?

The else structure is like the if structure

it ends in a colon (:)
the indented code block beneath it executes if the condition is false

>>> num = 37
>>> if num > 100:
... print('greater')
... else:
... print('not greater')
...
not greater

SLIDE Conditional logic

OPTIONALLY SHOW THIS SLIDE

Describe flowchart

SLIDE if-elif-else conditionals

We can chain conditional tests together with elif (short for else if)
The elif statement structure is the same as the if statement structure

the indented code block is executed if the condition is true, and no previous conditions have
been met.

>>> num = -3
>>> if num > 0:
... print(num, "is positive")
... elif num == 0:
... print(num, "is zero")
... else:
... print(num, "is negative")
...
-3 is negative

NOTE: the test for equality is a double-equals!

SLIDE COMBINING CONDITIONS

We can combine conditions using Boolean Logic
Operators include and, or and not

>>> if (1 > 0) and (-1 > 0):
... print('both parts are true')
... else:
... print('at least one part is false')
...
at least one part is false
>>> if (4 > 0) and (2 > 0):
... print('both parts are true')
... else:
... print('at least one part is false')
...
both parts are true
>>> if (4 > 0) or (2 > 0):
... print('at least one part is true')
... else:
... print('both parts are false')
...
at least one part is true

SLIDE Exercise 07 (5min)

MCQ: Put up four stickies

Solution: C

NOTE: There are two elifs and no else

SLIDE More operators

These are two operators you will meet and use frequently
== (double-equals) is the equality operator, and returns True if the left-hand-side value is
equal to the right-hand-side value
we've already been using this

>>> print(1 == 1)
True
>>> print(1 ==2)
False

in is the membership operator, and returns True if the left-hand-side value is in the right-hand-side
value (which should be a collection)

>>> print('a' in 'toast')
True
>>> print('b' in 'toast')
False
>>> print(1 in [1, 2, 3])
True
>>> print(1 in range(3))
True
>>> print(1 in range(2, 10))
False

SECTION 08: Analysing multiple files

SLIDE Analysing multiple files

We have received several files of data from the inflammation studies, and we would like to perform
the same operations on each of them.

We have learned how to open files, read data, visualise data, loop over data, and make decisions
based on that content.

We're going to write a new script to do this

Exit Python console
Start new script

$ nano analyse_files.py

Now we need to know how to interact with the filesystem to get our data files.

SLIDE The os module

To interact with the filesystem, we need to import the os module

This allows us to interact with the filesystem in the same way, regardless of the operating system we work
on! INTEROPERABILITY AND REPRODUCIBILITY

Put imports at the top of the script

import matplotlib.pyplot
import numpy as np
import os

SLIDE os.listdir()

The os.listdir() function lists the contents of a directory

SAVE AND EXIT SCRIPT

$ python

>>> import os
>>> os.listdir('.')
['subplots.py', 'code', 'exercise_05.py', 'analyse_files.py', 'data']

Our data is in the 'data' directory

>>> os.listdir('data')
['inflammation-05.csv', 'inflammation-11.csv', 'inflammation-10.csv',
'inflammation-04.csv', 'inflammation-12.csv', 'inflammation-06.csv',
'inflammation-07.csv', 'inflammation-03.csv', 'small-02.csv', 'small-
03.csv', 'inflammation-02.csv', 'small-01.csv', 'inflammation-01.csv',
'inflammation-09.csv', 'inflammation-08.csv']

We only want inflammation data so we would like to ignore the small files
We want to turn the list from os.listdir() into a list that contains only inflammation* files:
use for loop and if to filter
The list can be filtered with a for loop or list comprehension

>>> for file in os.listdir('data'):
... if 'inflammation' in file:
... print(file)
...
inflammation-05.csv
inflammation-11.csv
inflammation-10.csv
inflammation-04.csv
inflammation-12.csv
inflammation-06.csv
inflammation-07.csv
inflammation-03.csv
inflammation-02.csv
inflammation-01.csv
inflammation-09.csv
inflammation-08.csv

We'd like to work with this set of files, so we store it in a variable, called files.

A suitable data type here is a list, and we can populate it one file at a time, using .append()

>>> files = []
>>> for file in os.listdir('data'):
... if 'inflammation' in file:
... files.append(file)
...
>>> print(files)
['inflammation-05.csv', 'inflammation-11.csv', 'inflammation-10.csv',
'inflammation-04.csv', 'inflammation-12.csv', 'inflammation-06.csv',
'inflammation-07.csv', 'inflammation-03.csv', 'inflammation-02.csv',
'inflammation-01.csv', 'inflammation-09.csv', 'inflammation-08.csv']

Let's put this in our script
EXIT THE CONSOLE
OPEN THE SCRIPT

nano analyse_files.py

Get a list of inflammation data files
files = []
for fname in os.listdir('data'):
 if 'inflammation' in fname:
 files.append(fname)
print("Inflammation data files:", files)

EXIT EDITOR AND RUN THE SCRIPT

$ python analyse_files.py
Inflammation data files: ['inflammation-05.csv', 'inflammation-11.csv',
'inflammation-10.csv', 'inflammation-04.csv', 'inflammation-12.csv',
'inflammation-06.csv', 'inflammation-07.csv', 'inflammation-03.csv',
'inflammation-02.csv', 'inflammation-01.csv', 'inflammation-09.csv',
'inflammation-08.csv']

QUESTION: what's wrong with the filenames?

SLIDE os.path.join()

The os.listdir() function only returns filenames, not the path (relative or absolute) to those files.

WE NEED THE FULL PATH TO A FILE TO BE ABLE TO USE IT

To construct a path, we can use the os.path.join() function.

os.path.join() takes directory and file names, and returns a path built from them as a string,
suitable for the underlying operating system.
This is useful for making code shareable and usable on all OS/computers

START PYTHON CONSOLE

python

>>> os.path.join('parent', 'child', 'file.txt')
'parent/child/file.txt'
>>> os.path.join('data', 'inflammation-01.csv')
'data/inflammation-01.csv'

CLOSE CONSOLE AND OPEN EDITOR

$ nano analyse_files.py

Get a list of inflammation data files
files = []
for fname in os.listdir('data'):
 if 'inflammation' in fname:
 files.append(os.path.join('data', fname))
print("Inflammation data files:", files)

SAVE AND EXIT SCRIPT, THEN RUN

$ python analyse_files.py
Inflammation data files: ['data/inflammation-05.csv', 'data/inflammation-
11.csv', 'data/inflammation-10.csv', 'data/inflammation-04.csv',
'data/inflammation-12.csv', 'data/inflammation-06.csv',
'data/inflammation-07.csv', 'data/inflammation-03.csv',
'data/inflammation-02.csv', 'data/inflammation-01.csv',
'data/inflammation-09.csv', 'data/inflammation-08.csv']

SLIDE Visualising the data

Now we have all the tools we need to load all the inflammation data files, and visualise the mean,
minimum and maximum values in an array of plots.

We can get a list of paths to the data files with os and a list comprehension
We can load data from a file with numpy.loadtxt()
We can calculate summary statistics with numpy.mean(), numpy.max(), etc.
We can create figures with matplotlib, and arrays of figures with .add_subplot()

SLIDE Visualisation code

BUILD THE CODE IN STAGES
OPEN THE SCRIPT IN THE EDITOR

$ nano analyse_files.py

1 - show that we see each filename in turn

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

2 - load the data in each file

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

3 - create a figure for each file

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

 # create figure and three axes
 fig = plt.figure(figsize=(10.0, 3.0))
 axes1 = fig.add_subplot(1, 3, 1)
 axes2 = fig.add_subplot(1, 3, 2)
 axes3 = fig.add_subplot(1, 3, 3)

4 - decorate the axes

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data

 data = np.loadtxt(fname=fname, delimiter=',')

 # create figure and three axes
 fig = plt.figure(figsize=(10.0, 3.0))
 axes1 = fig.add_subplot(1, 3, 1)
 axes2 = fig.add_subplot(1, 3, 2)
 axes3 = fig.add_subplot(1, 3, 3)

 # decorate the axes
 axes1.set_ylabel('average')
 axes2.set_ylabel('maximum')
 axes3.set_ylabel('minimum')

5 - plot the data

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

 # create figure and three axes
 fig = plt.figure(figsize=(10.0, 3.0))
 axes1 = fig.add_subplot(1, 3, 1)
 axes2 = fig.add_subplot(1, 3, 2)
 axes3 = fig.add_subplot(1, 3, 3)

 # decorate the axes
 axes1.set_ylabel('average')
 axes2.set_ylabel('maximum')
 axes3.set_ylabel('minimum')

 # plot the data
 axes1.plot(data.mean(axis=0))
 axes2.plot(data.max(axis=0))
 axes3.plot(data.min(axis=0))

6 - tidy and show plot

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

 # create figure and three axes
 fig = plt.figure(figsize=(10.0, 3.0))
 axes1 = fig.add_subplot(1, 3, 1)

 axes2 = fig.add_subplot(1, 3, 2)
 axes3 = fig.add_subplot(1, 3, 3)

 # decorate the axes
 axes1.set_ylabel('average')
 axes2.set_ylabel('maximum')
 axes3.set_ylabel('minimum')

 # plot the data
 axes1.plot(data.mean(axis=0))
 axes2.plot(data.max(axis=0))
 axes3.plot(data.min(axis=0))

 # tidy plot and render
 fig.tight_layout()
 plt.show()

EXIT THE EDITOR AND RUN SCRIPT

$ python analyse_files.py

THIS IS INTERACTIVE. WHAT IF WE WANT TO SAVE IMAGES?
OPEN THE EDITOR AND CHANGE THE SCRIPT

[...]

Get a list of inflammation data files
files = []
for fname in os.listdir('data'):
 if 'inflammation' in fname and fname[-4:] == '.csv':
 files.append(os.path.join('data', fname))

[...]

 # tidy plot and render
 fig.tight_layout()
 # plt.show()

 # save image to file
 imgname = fname[:-4] + '.png'
 print('Writing image to', imgname)
 plt.savefig(imgname)

EXIT THE EDITOR AND RUN SCRIPT

$ python analyse_files.py

CHECK CONTENTS OF data DIRECTORY, AND VIEW .png FILES

SLIDE Checking data

There are two suspicious features to some of the datasets

1. The maximum values rose and fell as straight lines
2. The minimum values are consistently zero

We'll use if statements to test for these conditions and give a warning

SLIDE Test for suspicious maxima

Is day zero value 0, and day 20 value 20?

$ nano analyse_files.py

ADD TO EXISTING CODE BEFORE CREATING FIGURE

 # Test for suspicious maxima
 if np.max(data, axis=0)[0] == 0 and np.max(data, axis=0)[20] == 20:
 print("Suspicious-looking maxima!")

RUN SCRIPT

$ python analyse_files.py

SLIDE SUSPICIOUS MINIMA

Are all the minima zero? (do they sum to zero?)

$ nano analyse_files.py

ADD TO EXISTING CODE BEFORE CREATING FIGURE

 # Test for suspicious maxima
 if np.max(data, axis=0)[0] == 0 and np.max(data, axis=0)[20] == 20:
 print("Suspicious-looking maxima!")

 elif np.sum(data.min(axis=0)) == 0:
 print('Minima sum to zero!')

RUN SCRIPT

$ python analyse_files.py

SLIDE BEING TIDY

If everything's OK, let's be reassuring

ADD TO EXISTING CODE BEFORE PLOT

ADD TO EXISTING CODE BEFORE CREATING FIGURE

 # Test for suspicious maxima
 if np.max(data, axis=0)[0] == 0 and np.max(data, axis=0)[20] == 20:
 print("Suspicious-looking maxima!")
 elif np.sum(data.min(axis=0)) == 0:
 print('Minima sum to zero!')
 else:
 print('Seems OK!')

RUN SCRIPT

$ python analyse_files.py

SECTION 09: Conclusions (Part 1)

SLIDE Learning outcomes

Some things you might not have known about at lunchtime:

variables
data types: arrays, lists, strings, numbers
file IO: loading data, listing files, manipulating filenames
calculating statistics
plotting data: plots and subplots
program flow: loops and conditionals

automating multiple analyses
Python scripts: edit-save-execute

SLIDE WELL DONE!

SEND THEM HOME HAPPY!

TITLE: Building Programs With Python (Part 2)

SLIDE: Etherpad

Please use the Etherpad for the course DEMONSTRATE LINK

SLIDE Why are we here?

We're here to learn how to program
This is a way to solve problems in your research through making a computer do work quickly and
accurately

You'll be continuing to build your data analysis script from yesterday
You'll automate functions to perform tasks over and over again (in various combinations)

You'll manipulate data, which is at the heart of all academia
You'll learn how to build functions that do specific, defined tasks and encapsulate code, making it
reusable and readable
You'll learn some defensive programming, so that you automatically catch problems in your
code/data handling

SLIDE XKCD

Again, this slide is only a little bit flippant
No-one writes perfect code, first time

It's all about revision, and good practice: defensive programming
These principles will make your life, and other people's lives, much easier

SLIDE Setting up

We want a neat (clean) working environment

Change directory to desktop (in terminal or Explorer)

Change your working directory to python-novice-inflammation (from yesterday/earlier)

$ cd ~/Desktop
$ cd python-novice-inflammation

SECTION 10: Jupyter notebooks

SLIDE Starting Jupyter

Make sure you're in the project directory python-novice-inflammation
Start Jupyter from the command-line
CHECK WHETHER EVERYONE SEES A WORKING JUPYTER NOTEBOOK

$ jupyter notebook

SLIDE Jupyter landing page

Jupyter landing page is a file browser, like Explorer/Finder

Point out Python (.py) files, .zip files, and directories)
Point out directory (data), and how the file symbols are different. (the triangle by the check box
gives a key)

Point out New button.

SLIDE Create a new notebook

Click on New -> Python 3
Point out that there may or may not be other options in the student's installation
Indicate the new features on the empty notebook:

The notebook name: Untitled
Checkpoint information (the last time the notebook was saved, for safety)
The menu bar (File Edit etc.) - just like Word or Excel
An indication of which kernel you're using/language you're in
Icon view (just like Word or Excel)
An empty cell with In []:

Point out the box around the cell, and that it changes colour when you start to edit

SLIDE My first notebook

Give the notebook the name functions

Click on Untitled and enter the name functions

SLIDE Cell types

Jupyter documents are comprised of cells

A cell can be one of several types - we'll focus on two:

Code: code in the current kernel/language
Markdown: text, with the opportunity for formatting

Change the first cell type to Markdown

The box colour changes from green to blue
The In [] prompt disappears

SLIDE Markdown text

Markdown lets us enter formatted text

Headers are preceded by a hash: #
The level of header is determined by the number of hashes: #
Typewriter text/code is shown by enclosing in backticks: ```
Italics are shown by enclosing text in single asterisks: *italic*
LaTeX can be entered within dollar signs $

Press Shift + Enter to execute a cell

The cell is rendered, and a new cell appears beneath the executed cell

Functions

Functions are pieces of code that take an input and return an output. They
enable us to break our code into logical chunks that are easier to
understand and maintain.

Temperature conversion

As an example in `Python`, we will create a function that converts
temperature between *Fahrenheit* and *Kelvin* scales.

SECTION 11: Functions

SLIDE Motivation

We wrote some code that plots values of interest from multiple datasets

but that code is long and complicated

The code is also not very flexible if we want to deal with thousands of files, and we can't modify it to plot
only a subset of files very easily

Cutting and pasting is slow and error-prone

SO we will package our code for reuse.

We do this by writing functions

SLIDE What is a function?

Functions in code work like mathematical functions, like $y = f(x)$

$f()$ is the function
x is an input (or inputs)
y is the returned value, or output(s)

The function's output y depends in some way on the value of x - the dependency is defined by $f()$.

Not all functions in code take an input, or produce a usable output, but the principle is generally
the same.

You've already been using functions in this course: print(), numpy.max(), etc.

SLIDE My first function

REFER TO THE CODE IN THE NOTEBOOK
We've written a function to convert Fahrenheit to Kelvin, called fahr_to_kelvin()

Describe the mathematical function:
This function takes x, subtracts 32, multiplies by 5/9, and adds 273.15

In Python this translates to the code below:
The function performs a calculation, which is returned by the return statement.
The value of the variable temp is taken through the same calculation as in the
mathematical function, and is then returned.
Functions are defined by the def keyword
The name of the function follows the def keyword (equivalent to f in the mathematical example)
The first line ends in a colon, just like a for loop or if statement.
The code, or body of the function is indented, just like a for loop or if statement.
The parameters or inputs to the function are then defined in parentheses. These get a variable
name which only exists within the function. Here, there is one parameter, called temp.

SLIDE Calling the function

We call fahr_to_kelvin in exactly the same way we call any other function we've seen so far
e.g. print() or numpy.mean()

print('freezing point of water:', fahr_to_kelvin(32))
print('boiling point of water:', fahr_to_kelvin(212))

NOTE: that the returned values from executing code show up in the notebook below the cell

SLIDE Create a new function

ASK THE LEARNERS HOW WE WOULD CREATE A NEW FUNCTION TO CONVERT KELVIN TO
CELSIUS
Walk through the process, being prompted

def kelvin_to_celsius(temp):
 return temp - 273.15

ASK THE LEARNERS HOW TO CALL THE FUNCTION

print('freezing point of water', kelvin_to_celsius(273.15))

SLIDE Composing functions

Composing Python functions works just like mathematical functions: y = f(g(x))

ASK HOW WE CAN CONVERT FAHRENHEIT TO CELSIUS WITH OUR EXISTING FUNCTIONS

We could convert a temperature in fahrenheit (temp_f) to a temperature in celsius (temp_c) by
executing the code:

temp_f = 212.0
temp_c = kelvin_to_celsius(fahr_to_kelvin(temp_f))
print(temp_c)

SLIDE New functions from old

**ASK LEARNERS HOW WE CAN TURN THIS INTO A NEW FUNCTION: fahr_to_celsius():

def fahr_to_celsius(temp_f):
 return kelvin_to_celsius(fahr_to_kelvin(temp_f))

We can call this just like any other function

print('freezing point of water in Celsius:', fahr_to_celsius(32.0))

THIS IS HOW PROGRAMS ARE BUILT: COMBINING SMALL CHUNKS OF CODE INTO LARGER
BITS UNTIL WE GET THE RESULT WE WANT

SLIDE Exercise 08 (10min)

SHOW THE SLIDES FOR THE EXERCISE

def outer(s)
 return s[0] + s[-1]

RETURN TO THE NOTEBOOK

SLIDE Function scope

Make a Markdown note

Function scope

Variables defined within a function (including parameters) are not
available outside the function unless they are returned.

This is called function scope

DEMO THE CODE BELOW

a = "Hello"

print(a)

This code defines a variable a and gives it a value "Hello"

NOW DECLARE A FUNCTION (IN THE SAME CELL) AND CALL IT

a = "Hello"

def my_fn(a):

 a = "Goodbye"

my_fn(a)
print(a)

Returning a doesn't - by itself - change anything

a = "Hello"

def my_fn():
 a = "Goodbye"
 return a

my_fn(a)
print(a)

To move values to and from functions, you should generally return them from the function, and catch
them in a variable
COMPLETE THE CODE EXAMPLE IN THE CELL

a = "Hello"

def my_fn(a):
 a = "Goodbye"
 return a

a = my_fn(a)
print(a)

SLIDE Exercise 09 (5min)

PUT THE SLIDES ON SCREEN

MCQ: put coloured stickies up

Solution: 1: 7 3 (this differs from that on the SWC page)

SECTION 12: Refactoring

SLIDE Tidying up

Now we can write functions, let's make the inflammation analysis easier to reuse

ONE FUNCTION PER OPERATION

CLOSE THE NOTEBOOKS

**OPEN UP THE ANALYSE_FILES.PY SCRIPT

TALK THE STUDENTS THROUGH THE CODE LOGIC: TWO SECTIONS - ANALYSE AND DETECT
PROBLEMS

The code can be divided into two main sections, which could be functions:

1. check the data for problems
2. plot the data

SLIDE detect_problems()

We noticed that some data was questionable

This function spots problems with the data

Call the function after loading, before plotting

OPEN EDITOR AND CHANGE CODE

$ nano analyse_files.py

Detect problems with a dataset
def detect_problems(data):
 if np.max(data, axis=0)[0] == 0 and np.max(data, axis=0)[20] == 20:
 print("Suspicious-looking maxima!")
 elif np.sum(data.min(axis=0)) == 0:
 print('Minima sum to zero!')
 else:
 print('Seems OK!')

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

 # identify problems in the data
 detect_problems(data)

SAVE AND RUN SCRIPT

$ python analyse_files.py

SLIDE plot_data()

We'll write a function that plots the data

Plot passed data in the specified file
def plot_data(data, fname):
 # create figure and three axes
 fig = plt.figure(figsize=(10.0, 3.0))
 axes1 = fig.add_subplot(1, 3, 1)
 axes2 = fig.add_subplot(1, 3, 2)
 axes3 = fig.add_subplot(1, 3, 3)

 # decorate the axes
 axes1.set_ylabel('average')
 axes2.set_ylabel('maximum')
 axes3.set_ylabel('minimum')

 # plot the data
 axes1.plot(data.mean(axis=0))
 axes2.plot(data.max(axis=0))
 axes3.plot(data.min(axis=0))

 # tidy plot and render
 fig.tight_layout()
 print('Writing image to', imgname)
 plt.savefig(imgname)

Analyse each file in turn
for fname in files:
 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

 # identify problems in the data
 detect_problems(data)

 # plot image in file
 imgname = fname[:-4] + '.png'
 plot_data(data, imgname)

SLIDE Code reuse

The logic of the code is now easier to understand
We identify the input files, then apply one function per action in a loop:

Print the filename
Load the data with np.loadtxt()
detect_problems() in the data
plot_data() the data

Analyse each file in turn
for fname in files:

 print("Analysing", fname)

 # load data
 data = np.loadtxt(fname=fname, delimiter=',')

 # identify problems in the data
 detect_problems(data)

 # plot image in file
 imgname = fname[:-4] + '.png'
 plot_data(data, imgname)

THIS HAS ADVANTAGES
The code is much shorter (as we read it, here)
The function names are human-readable and descriptive
It is much easier to see what the code is doing

SLIDE Good code pays off

YOU MAY BE ASKING YOURSELF WHY YOU WANT TO BOTHER WITH THIS
After 6 months, the referee report arrives and you need to rerun experiments
Another student is continuing the project
Some random person reads your article and asks for the code
Helps spot errors quickly
Clarifies structure in your mind as well as in the code
Saves you time in the long run! ("Future You" will back this up)

SECTION 13: Command-line programs

SLIDE Learning objectives

How can I write Python programs that will work like Unix command-line tools?

Use the values of command-line arguments in a program.

Handle flags and files separately in a command-line program.

Read data from standard input in a program so that it can be used in a pipeline (with pipes: |)

SLIDE The sys module

The sys module is the main way Python lets you interact with the operating system. You can:

run programs

parse commands
get information about the system

We're going to use it in some new scripts

Create a new file called sys_version.py

$ nano sys_version.py

Enter the code below

import sys
print('version is', sys.version)

Run the script

$ python sys_version.py
version is 3.6.3 |Anaconda custom (64-bit)| (default, Oct 6 2017,
12:04:38)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]

SLIDE sys.argv

sys.argv is a variable that contains the command-line arguments used to call our script

The variable is a list of arguments

Open a new file called sys_argv.py in the editor

$ nano sys_argv.py

Enter the code below

import sys
print('sys.argv is', sys.argv)

Run the script with some options

$ python sys_argv.py
sys.argv is ['sys_argv.py']
$ python sys_argv.py item1 item2 somefile.txt
sys.argv is ['sys_argv.py', 'item1', 'item2', 'somefile.txt']

The name of the script is always the first element: sys.argv[0]

SLIDE Building a new script

We're going to build a script that reports readings from data files

$ python readings.py mydata.csv

We will make it take options --min, --max, --mean
The script will report one of these

$ python readings.py --min mydata.csv

We will make it handle multiple files

$ python readings.py --min mydata.csv myotherdata.csv

We will make it take STDIN so we can use it with pipes

$ python readings.py --min < mydata.csv

SLIDE Starting the framework

We start with a script that doesn't do all that

We'll build features in one-by-one

Create a new file called readings.py in the editor

$ nano readings.py

Add the code below and explain
imports at the top
define a main() function to hold code that does the work of the script
We catch the script name
We catch the first argument (filename)
We load the data
For each patient, we print the mean inflammation

import sys
import numpy

def main():
 script = sys.argv[0]
 filename = sys.argv[1]
 data = numpy.loadtxt(filename, delimiter=',')
 for m in numpy.mean(data, axis=1):
 print(m)

Run the script

$ python readings.py

NOTHING HAPPENS - WHY?
We've defined a function, but it hasn't been called

SLIDE Calling a script

There's a way to tell if a Python file is being run as a script

If we use this, we can use the same file as:

a module (import readings)
a script ($ python readings.py)

The Python code has __name__ == '__main__' only when run as a script

We want to run main() only if the file is run as a script

Add this code to the bottom of readings.py

if __name__ == '__main__':
 main()

Run the script
small-01.csv is a reduced dataset, created for testing

$ python readings.py data/small-01.csv
0.333333333333
1.0

SLIDE Handling multiple files

We want to be able to analyse multiple files with one command

NOTE: wildcards are expanded by the operating system
DEMO the code

$ ls data/small-*
data/small-01.csv data/small-02.csv data/small-03.csv
$ python sys_argv.py data/small-*
sys.argv is ['sys_argv.py', 'data/small-01.csv', 'data/small-02.csv',
'data/small-03.csv']

All arguments from index 1 onwards are filenames
So loop over everything in sys.argv[1:]
Change the main() function

def main():
 script = sys.argv[0]
 for filename in sys.argv[1:]:
 print(filename)
 data = numpy.loadtxt(filename, delimiter=',')
 for m in numpy.mean(data, axis=1):
 print(m)

Demo the code

$ python readings.py data/small-*
data/small-01.csv
0.333333333333
1.0
data/small-02.csv
13.6666666667
11.0
data/small-03.csv
0.666666666667
0.666666666667
$ python readings.py data/small-01.csv
data/small-01.csv
0.333333333333
1.0

SLIDES Handling flags

We want to use --min, --max, --mean to tell the script what to calculate

$ python readings.py --max myfile.csv

The flag will be sys.argv[1], so filenames are sys.argv[2:]

We'll need to modify the code to handle this

We should check that flags are valid

Check this with an if statement
Use sys.exit() to quit the script if the action is wrong

MODIFY THE SCRIPT AS BELOW

def main():
 script = sys.argv[0]
 action = sys.argv[1]
 filenames = sys.argv[2:]
 if action not in ['--min', '--mean', '--max']:
 print('Action is not one of --min, --mean, or --max: ' + action)
 sys.exit(1)
 for f in filenames:
 process(f, action)

TRY THE SCRIPT

$ python readings.py --min data/small-01.csv
Traceback (most recent call last):
 File "readings.py", line 15, in <module>
 main()
 File "readings.py", line 12, in main
 process(f, action)
NameError: name 'process' is not defined

We'll add a process() function shortly
TEST A BAD ACTION

$ python readings.py --std data/small-01.csv
Action is not one of --min, --mean, or --max: --std

We have a useful error message

SLIDE Add process()

We split the script into two functions for readability

The main() function clearly handles the command-line
The process() function handles the data

**Add the code to readings.py

def process(filename, action):
 data = numpy.loadtxt(filename, delimiter=',')

 if action == '--min':
 values = numpy.min(data, axis=1)
 elif action == '--mean':
 values = numpy.mean(data, axis=1)
 elif action == '--max':
 values = numpy.max(data, axis=1)

 for m in values:
 print(m)

TRY THE SCRIPT

$ python readings.py --min data/small-01.csv
0.0
0.0
$ python readings.py --mean data/small-01.csv
0.333333333333
1.0
$ python readings.py --mean data/small-0*
0.333333333333
1.0
13.6666666667
11.0
0.666666666667
0.666666666667

SLIDE Using STDIN

The final change will let us use STDIN if no file is specified

sys.stdin catches STDIN from the operating system

MODIFY THE SCRIPT AS BELOW

 if len(filenames) == 0:
 process(sys.stdin, action)
 else:
 for f in filenames:
 process(f, action)

TEST THE SCRIPT

$ python readings.py --mean data/small-*
0.333333333333

1.0
13.6666666667
11.0
0.666666666667
0.666666666667
$ python readings.py --mean < data/small-01.csv
0.333333333333
1.0

AND WE'RE DONE!!!

SECTION 14: Testing and documentation

SLIDE Motivation

Once a useful function is written, it gets reused over and over, often without further checking
When you write a function you should:

Test output for correctness
Document the expected function

We'll demonstrate this with a function to centre a numerical array

SLIDE Create a new notebook

New notebook called testing

ADD AN INTRO IN MARKDOWN

Testing and Documentation

When writing a function, we should

- test output for correctness
- document the expected function

ADD IMPORTS

import numpy as np

SLIDE centre()

Write the test function

When doing some analyses, such as PCA, we might want to recentre and normalise our dataset.

Let's write a function to recentre an array of data, like the inflammation data.

EXPLAIN THE MATHS IF NECESSARY

def centre(data, desired):
 return (data - np.mean(data)) + desired

SLIDE Test datasets

ASK THE LEARNERS HOW WE CAN CHECK THAT THE FUNCTION WORKS IN THE WAY WE
INTEND

We could try centre() on our real data, but we don't know what the answer should be!*

We'll use numpy's zeros() function to generate an input set where we know the answer

SHOW THE TEST DATA

z = np.zeros((2, 2))
z

Let's recentre the data at the value 2

centre(z, 3.0)

This works, so we'll try it on real data

SLIDE Real data

LOAD THE DATA

data = np.loadtxt(fname='data/inflammation-01.csv', delimiter=',')

Let's recentre the data to zero

centre(data, 0))

This looks OK, but how would we know it worked?

SLIDE Check properties

ASK LEARNERS HOW THEY COULD VERIFY THE FUNCTION WORKED AS INTENDED

We can check properties of the original and centred data

mean, min, max, std

print('original min, mean, and max are:', numpy.min(data),
numpy.mean(data), numpy.max(data))

We'd expect the mean of the new dataset to be approximately 0.0
Also, the range (max - min) should be unchanged.

centred = centre(data, 0)
print('min, mean, and max of centered data are:', numpy.min(centred),
 numpy.mean(centred), numpy.max(centred))

The limits seem OK, but has the shape of the data distribution changed?
The variance of the dataset should be unchanged.

The range and variance are as expected, but the mean is not quite 0.0

The function is probably OK, as-is

SLIDE Documenting functions

We can document what our function does by writing comments in the code, and this is a good thing.

But Python allows us to document what a function does directly in the function using a docstring.

This is a string that is put in a specific place in the function definition, and it has special properties
that are useful.

To add a docstring to our centre() function, we add a string immediately after the function declaration

ADD DOCSTRING TO EXISTING FUNCTION AND RUN CELL

def centre(data, desired):
 """Returns the array in data, recentered around the desired value."""
 return (data - numpy.mean(data)) + desired

RESTART KERNEL AND RUN ALL

This documents the function directly in the source code, and it also hooks that documentation into
Python's help system.

We can ask for help on any function using the help() function:

print('std dev before and after:', numpy.std(data), numpy.std(centred))

built-in functions

help(print)

functions from modules

help(numpy.mean)

and if you write it your own functions

help(centre)

SHOW LEARNERS HOW DETAILED THE BUILTIN AND NUMPY HELP IS

Using the triple quotes (""") allows us to use a multi-line string to describe the function:

ADD EXTRA DOCUMENTATION

def centre(data, desired):
 """Returns the array in data, recentred around the desired value.

 Example

 >>> centre([1, 2, 3], 0)
 [-1, 0, 1]
 """
 return (data - numpy.mean(data)) + desired

DEMONSTRATE THE CHANGE

SLIDE Default arguments

So far we have named the two arguments in our centre() function
We need to specify both of them when we call the function

centre([1, 2, 3], 0)
array([-1., 0., 1.])

centre([1, 2, 3])
--
-
TypeError Traceback (most recent call
last)
<ipython-input-13-9131fef8e3dc> in <module>()

----> 1 centre([1, 2, 3])

TypeError: centre() missing 1 required positional argument: 'desired'

We can set a default value for function arguments when we define the function
Set defaults by assigning a value in the function declaration, as follows:

def centre(data, desired=0.0):
 """Returns the array in data, recentred around the desired value.

 Example

 >>> centre([1, 2, 3], 0)
 [-1, 0, 1]
 """
 return (data - numpy.mean(data)) + desired

The change we've made is to set desired=0.0 in the function prototype.
Now, by default, the function will recentre the passed data to zero, without us having to specify that:

centre([1, 2, 3])

SLIDE Create a new notebook

New notebook called testing
ADD AN INTRO IN MARKDOWN

Testing and Documentation

When writing a function, we should

* test output for correctness
* document the expected function

ADD IMPORTS

import numpy

Write the test function
When doing some analyses, such as PCA, we might want to recentre and normalise our dataset.
Let's write a function to recentre an array of data, like the inflammation data.

def centre(data, desired):
 return (data - np.mean(data)) + desired

SLIDE Exercise 10 (10min)

MOVE SLIDES TO THE SCREEN

def rescale(data):
 """Returns input array rescaled to [0.0, 0.1]."""
 l = numpy.min(data)
 h = numpy.max(data)
 return (data - l) / (h - l)

SLIDE Errors and exceptions

MOVE NOTEBOOK TO THE SCREEN

SLIDE Create a new notebook

Call the notebook errors
ADD AN INTRO

Errors and Exceptions

`Python` provides useful error reports of what has gone wrong, which can
help with debugging.

SECTION 15: Errors

SLIDE Create a new notebook

Call the notebook errors
ADD AN INTRO

Errors and Exceptions

`Python` provides useful error reports of what has gone wrong, which can
help with debugging.

SLIDE Errors

Programming is essentially just making errors over and over again until the code works
The key skill is learning how to identify, and then fix, the errors when they are reported.
All programmers make errors.

SLIDE Traceback

Python tries to be helpful, and provides extensive information about errors

These are called tracebacks

We'll induce a traceback, so we can look at it

ENTER CODE IN A CELL

def favourite_ice_cream():
 ice_creams = ["chocolate",
 "vanilla",
 "strawberry"]
 print(ice_creams[3])

NEW CELL

favourite_ice_cream()

SLIDE Anatomy of a traceback

--
-
IndexError Traceback (most recent call
last)
<ipython-input-4-8f18c934933f> in <module>()
----> 1 favourite_ice_cream()

<ipython-input-3-3f8910a0f7ad> in favourite_ice_cream()
 3 "vanilla",
 4 "strawberry"]
----> 5 print(ice_creams[3])

IndexError: list index out of range

TALK THROUGH THE TRACEBACK IN THE NOTEBOOK

The stack of all steps leading to the error is shown
The steps are separated by lines starting <ipython-input-1…
The steps run in order from top to bottom

The first step has an arrow, showing where we were when the error happened. We were calling the
favourite_ice_cream() function

The second step tells us that we were in the favourite_ice_cream() function

The second step also points to the line print(ice_creams[3]), which is where the error
occurs
This is also the last step, and the precise error is shown on the final line: IndexError: list
index out of range

Together, this tells us that we have made an index error in the line print(ice_creams[3]), and by
looking we can see that we've tried to use an index outside the length of the list.

SLIDE Syntax errors

The error you saw just now was a logic error - the code was valid Python, but it did something
'illegal' when it ran

We have to run the code to see the error

Syntax errors occur when the code is not interpretable as valid Python

The error is reported before the code runs

ENTER CODE IN A NEW CELL - NOTE THE EXTRA SPACE AND LACK OF COLON!

def some_function()
 msg = "hello, world!"
 print(msg)
 return msg

SLIDE Syntax traceback

 File "<ipython-input-6-bef8c18baffa>", line 1
 def some_function()
 ^
SyntaxError: invalid syntax

Python tells us there's a SyntaxError - the code isn't written correctly

We don't get the chance to run the code

It points to the approximate location of the problem with a caret/hat (^)

We can see that we need to put a colon at the end of the function declaration

FIX THE CODE IN PLACE

SLIDE Fixed?

SHOW AND RUN FIXED CODE

def some_function():
 msg = "hello, world!"
 print(msg)
 return msg

SLIDE Not quite

 File "<ipython-input-7-b32ba7f38b6b>", line 4
 return msg
 ^
IndentationError: unexpected indent

Python now tells us that there's an IndentationError

We don't learn about all the syntax errors at one time - Python gives up after the first one it finds

(fixing the first error in a file might correct all subsequent errors)

SLIDE Name errors

If you try to use a variable that is not defined in scope, you will get a NameError

This often happens with typos

ENTER CODE IN A NEW CELL

print(a)

We have a NAME ERROR

--
-
NameError Traceback (most recent call
last)
<ipython-input-5-c5a4f3535135> in <module>()

----> 1 print(a)

NameError: name 'a' is not defined

This is true in functions/loops, too
ENTER CODE IN A NEW CELL

for i in range(3):
 count = count + i

This still gives us a name error

--
NameError Traceback (most recent call
last)
<ipython-input-6-15ebe951e74d> in <module>()
 1 for i in range(3):
----> 2 count = count + i

NameError: name 'count' is not defined

SLIDE Index errors

If you try to access an element of a collection that does not exist, you'll get an IndexError

ENTER CODE IN NEW CELL

letters = ['a', 'b']
print("Letter #1 is", letters[0])
print("Letter #2 is", letters[1])
print("Letter #3 is", letters[2])

Letter #1 is a
Letter #2 is b
--
-
IndexError Traceback (most recent call
last)
<ipython-input-9-62bced7460d2> in <module>()
 2 print("Letter #1 is", letters[0])
 3 print("Letter #2 is", letters[1])
----> 4 print("Letter #3 is", letters[2])

IndexError: list index out of range

SLIDE Exercise 11 (10min)

PUT SLIDES ON SCREEN

message = ""
for number in range(10):
 # use a if the number is a multiple of 3, otherwise use b
 if (number % 3) == 0:
 message = message + "a"
 else:
 message = message + "b"
print(message)

SECTION 16: Defensive programming

SLIDE (Un)readable code

What does this function do?

GIVE LEARNERS A COUPLE OF MINUTES TO TRY TO WORK IT OUT

def s(p):
 a = 0
 for v in p:
 a += v
 m = a / len(p)
 d = 0
 for v in p:
 d += (v - m) * (v - m)
 return numpy.sqrt(d / (len(p) - 1))

SLIDE Readable code

What does this function do?

GIVE LEARNERS A COUPLE OF MINUTES TO TRY TO WORK IT OUT

def std_dev(sample):
 sample_sum = 0
 for value in sample:
 sample_sum += value

 sample_mean = sample_sum / len(sample)

 sum_squared_devs = 0
 for value in sample:
 sum_squared_devs += (value - sample_mean) * (value - sample_mean)

 return numpy.sqrt(sum_squared_devs / (len(sample) - 1))

This is the same code as in the previous slide

sensible function name
sensible variable names
blank lines to separate code blocks

Even without comments/documentation it's readable

FIRST LINE OF DEFENCE: sensible names, and documentation

But that's not all you can do to make your life easier.

SLIDE Create a new notebook

Call it defensive

ADD INTRO IN MARKDOWN

Defensive Programming

Defensive programming is the practice of expecting your code to have
mistakes, and guarding against them.

SLIDE Defensive programming

So far we have focused on the basic tools of writing a program: variables, lists, loops, conditionals,
and functions.

We haven't looked very much at whether a program is getting the right answer (and whether it
continues to get the right answer as we change it).
It's all very well having some code, but if it doesn't give the right answer it can be
damaging, or worse than useless

Defensive programming is the practice of expecting your code to have mistakes, and guarding against
them.

To do this, we will write some code that checks its own operation.
This is generally good practice, speeds up software development, and helps ensure that your code
is doing what you intend.

SLIDE Assertions

ADD INTRODUCTORY TEXT

Assertions

Assertions are a pythonic way to see if a program's state is correct.

``python
assert <condition>, "Some text describing the problem"
``

Assertions are a Pythonic way to see if code runs correctly

10-20% of the Firefox source code is assertions/checks on the rest of the code!

We assert that a condition should be True

If it's True, the code may be correct
If it's False, the code is not correct

The syntax for an assertion is that we assert some <condition> is True, and if it's not, an error is
thrown (AssertionError), with some text explaining the problem.

SLIDE Example assertion

Type code then ask learners what it does

numbers = [1.5, 2.3, 0.7, -0.001, 4.4]
total = 0.0
for n in numbers:
 assert n > 0.0, 'Data should only contain positive values'
 total += n
print('total is:', total)

EXECUTE CELL

--
-
AssertionError Traceback (most recent call
last)
<ipython-input-1-985f50018947> in <module>()
 2 total = 0.0
 3 for n in numbers:
----> 4 assert n > 0.0, 'Data should only contain positive values'
 5 total += n
 6 print('total is:', total)

AssertionError: Data should only contain positive values

The traceback tells us there is an AssertionError and highlights which assertion failed.
The assertion is a check that the code behaves how we expect
It can be valid Python, and not throw an error, but it might not be what we want

SLIDE When do we use assertions?

Assertions are useful in three circumstances:

1. preconditions - must be true at the start of an operation
2. postcondition - something guaranteed to be true when an operation completes
3. invariant - something always true at a particular point in code

PUT EXAMPLE CODE IN NEW CELL

def normalise_rectangle(rect):
 """Normalises a rectangle to the origin, longest axis 1.0 units."""
 x0, y0, x1, y1 = rect

 dx = x1 - x0
 dy = y1 - y0

 if dx > dy:
 scaled = float(dy) / dx
 upper_x, upper_y = 1.0, scaled
 else:
 scaled = float(dx) / dy
 upper_x, upper_y = scaled, 1.0

 return (0, 0, upper_x, upper_y)

Test with some values - in the same cell

Test function
normalise_rectangle((1.0, 1.0, 4.0, 4.0))
normalise_rectangle((1.0, 1.0, 4.0, 6.0))

DO ALL INPUTS MAKE SENSE?

normalise_rectangle((6.0, 4.0, 1.0, 1.0))
normalise_rectangle((6.0, 4.0, 1.0))

ASK LEARNERS WHAT SORT OF CHECKS WE NEED TO MAKE
Examples:

Input type - 4 values, all numbers
x0 < x1; y0 < y1 - lower left corner is identified first

output values less than or equal to 1 - correct result returned

SLIDE Preconditions

Preconditions must be true at the start of an operation or function

Here, we want to ensure that rect has four values

MAKE CHANGE IN CELL

def normalise_rectangle(rect):
 """Normalises a rectangle to the origin, longest axis 1.0 units."""
 assert len(rect) == 4, "Rectangle must have four co-ordinates"
 x0, y0, x1, y1 = rect

 dx = x1 - x0
 dy = y1 - y0

 if dx > dy:
 scaled = float(dy) / dx
 upper_x, upper_y = 1.0, scaled
 else:
 scaled = float(dx) / dy
 upper_x, upper_y = scaled, 1.0

 return (0, 0, upper_x, upper_y)

TEST FAILING INPUT AND SHOW ASSERTIONERROR

normalise_rectangle((6.0, 4.0, 1.0))

--
-
AssertionError Traceback (most recent call
last)
<ipython-input-10-6da0caef5016> in <module>()
 1 # Test function
----> 2 normalise_rectangle((6.0, 4.0, 1.0))

<ipython-input-9-7b5bc166ed3d> in normalise_rectangle(rect)
 1 def normalise_rectangle(rect):
 2 """Normalises a rectangle to the origin, longest axis 1.0
units."""
----> 3 assert len(rect) == 4, "Rectangle must have four co-ordinates"
 4 x0, y0, x1, y1 = rect
 5

AssertionError: Rectangle must have four co-ordinates

SHOW ANOTHER PROBLEM IN NEW CELL

normalise_rectangle((6.0, 4.0, 1.0, -0.5))

Ask learners what's going on

SLIDE Postconditions

Postconditions must be true at the end of an operation or function.

Here, we want to assert that the upper x and y values are in the range [0, 1]

MAKE CHANGE IN CELL

def normalise_rectangle(rect):
 """Normalises a rectangle to the origin, longest axis 1.0 units."""
 assert len(rect) == 4, "Rectangle must have four co-ordinates"
 x0, y0, x1, y1 = rect

 dx = x1 - x0
 dy = y1 - y0

 if dx > dy:
 scaled = float(dy) / dx
 upper_x, upper_y = 1.0, scaled
 else:
 scaled = float(dx) / dy
 upper_x, upper_y = scaled, 1.0

 assert 0 < upper_x <= 1.0, "Calculated upper x-coordinate invalid"
 assert 0 < upper_y <= 1.0, "Calculated upper y-coordinate invalid"

 return (0, 0, upper_x, upper_y)

TEST FAILING INPUT TO SHOW ASSERTIONERROR

normalise_rectangle((6.0, 4.0, 1.0, -0.5))

This isn't our code's fault!
The problem is that the input values have the upper-right corner below the lower left corner
We actually need to add another precondition

def normalise_rectangle(rect):
 """Normalises a rectangle to the origin, longest axis 1.0 units."""
 assert len(rect) == 4, "Rectangle must have four co-ordinates"
 x0, y0, x1, y1 = rect

 assert x0 < x1, "Invalid x-coordinates"

 assert y0 < y1, "Invalid y-coordinates"

 dx = x1 - x0
 dy = y1 - y0

 if dx > dy:
 scaled = float(dy) / dx
 upper_x, upper_y = 1.0, scaled
 else:
 scaled = float(dx) / dy
 upper_x, upper_y = scaled, 1.0

 assert 0 < upper_x <= 1.0, "Calculated upper x-coordinate invalid"
 assert 0 < upper_y <= 1.0, "Calculated upper y-coordinate invalid"

 return (0, 0, upper_x, upper_y)

DEMONSTRATE THE ERROR THAT'S RAISED

SLIDE Notes on assertions

PUT SLIDES ON SCREEN

Assertions help understand programs: they declare what the program should be doing

Assertions help the person reading the program match their understanding of the code to what the code
expects

Fail early, fail often

Turn bugs into assertions or tests: if you've made the mistake once, you might make it again

